US009116597B1

a2 United States Patent

Gulasky

US 9,116,597 B1
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(1)

(52)

(58)

(56)

7,020,697 Bl

7,251,748 B2
2003/0033330 Al*
2005/0138111 Al
2007/0220428 Al*
2007/0250544 Al
2009/0182915 Al
2009/0276692 Al

INFORMATION MANAGEMENT SOFTWARE
Applicant: CA, Inc., Islandia, NY (US)

Inventor: Gary R. Gulasky, Oakdale, PA (US)

Assignee: CA, INC.,, Islandia, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 191 days.

Appl. No.: 13/837,758

Filed: Mar. 15,2013

Int. CL.
GO6F 3/048
GO6F 3/0481
U.S. CL
CPC i GO6F 3/0481 (2013.01)
Field of Classification Search

USPC 715/762
See application file for complete search history.

(2013.01)
(2013.01)

References Cited
U.S. PATENT DOCUMENTS

3/2006
7/2007
2/2003
6/2005
9/2007
10/2007
7/2009
11/2009

Goodman et al.

Liberty et al.

Black etal.coveneee. 707/513
Aton et al.

Kureshy et al. 715/708
Shibata et al.

Farrell et al.

Rosner

2010/0125554 Al
2010/0162227 Al 6/2010
2012/0226677 Al 9/2012 Bolton et al.

2012/0254467 Al* 10/2012 Kasperetal. 709/246

OTHER PUBLICATIONS

5/2010 Jennings et al.

Davies et al.

Related U.S. Appl. No. 13/836,593, entitled “Software Management
Software,” filed Mar. 15, 2013 by Gary R. Gulasky.

Related U.S. Appl. No. 13/837,241, entitled “Problem Management
Software,” filed Mar. 15, 2013 by Gary R. Gulasky.

Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/836,593; Jan. 28,
2015; United States Patent and Trademark Office; Alexandria, VA.
Gulasky, Gary R.; Office Action; U.S. Appl. No. 13/837,241; Feb. 23,
2015; United States Patent and Trademark Office; Alexandria, VA.
Thuy Dao; Office Action; U.S. Appl. No. 13/836,593; Jun. 10, 2015,
United States Patent and Trademark Office; Alexandria, Virginia.
Ruiz, Angelica; Notice of Allowance; U.S. Appl. No. 13/837,241;
Jun. 22, 2015; United States Patent and Trademark Office; Alexan-
dria, Virginia.

* cited by examiner

Primary Examiner — Peiyong Weng
(74) Attorney, Agent, or Firm — Stevens & Showalter LLLP

(57) ABSTRACT

Computer systems are managed by providing systems pro-
grammers with visual displays and user interfaces that iden-
tify certain issues and allow the system programmer to readily
apply fixes, patches, and other updates without tediously
sifting through a mountain of information and manually
addressing those issues. The systems herein, provide a more
streamlined approach for the system programmer by reducing
the possibility of overlooking a particular issue that may
adversely affect the system.

20 Claims, 15 Drawing Sheets

\51151««3 s
-

-

COLLECT DATA INDICATIVE CF
CONDITION THAT IMPACTS
MAINFRAME SYSTEM

FROM 230 |
(FIG.2) |

i

120
EVALUATE DEGREE TOWHICH |/
CONDITION IMPACTS MAINFRAME

SYSTEM

i 130

DETERMINE ACTIONABLE TASK 2
FOR CONDITION

l 140

PLACE ENTRY IN ORDERED
LISTING BASED ON DEGREE

l 150

DISPLAY ORDERED LISTING WITH
ENTRY ON USER INTERFACE

INPUT FROM
USER? e

U.S. Patent

Aug. 25,2015

Sheet 1 of 15

US 9,116,597 B1

\4

COLLECT DATA INDICATIVE OF
CONDITION THAT IMPACTS
MAINFRAME SYSTEM

FROM 230 |

EVALUATE DEGREE TO WHICH
CONDITION IMPACTS MAINFRAME
SYSTEM

DETERMINE ACTIONABLE TASK
FOR CONDITION

PLACE ENTRY IN ORDERED
LISTING BASED ON DEGREE

\ 4

DISPLAY ORDERED LISTING WITH
ENTRY ON USER INTERFACE

INPUT FROM

160

FIG. 1

USER?

U.S. Patent

Aug. 25, 2015 Sheet 2 of 15

FROM 160
)

210

RECEIVE INPUT THROUGH USER |/
INTERFACE

220
EXECUTE ACTIONABLE TASK S

230
CLEAR ENTRY S

FIG. 2

US 9,116,597 B1

US 9,116,597 B1

Sheet 3 of 15

Aug. 25,2015

U.S. Patent

7

-

TN

1¥OXid A SH YO~

STd 2 Scitid »

$00d .~ S3dA

Sydd SHAdIHA
SY HONS WSD

YO A9 QYO TINMOQ HO3 O4N! INIWIT3

FOIAHIS 40 ALIRVA Y SFAIAOHd

¢ Ol

MOVLS INVHINIVIN »04 SdvHalT JWEINNY

GEe

il

INFINO L40ddNS {U\

mmmmﬁ“_mj 1398VE WS

.

N.\ Hzgmamxy

ANSWIOUNYIN FHYMLL0S

Ol NOUVAHOANI INIW3T

F0IAHES TYIILMO HEHAO

HLIA ONQTY QOWT T3 TIVISN ﬁ
HOVE Y04 NOLLYINSOAN

13A37 41d QOWT SANIS

WSO vO
\ ore
028

AINVLSISSY INJWFOVYNVIN JYMLZ0S OL WALSAS HOV3
NO QOWT HOVZ 04 NOLLYWHOLINI 13A31 31d QOWT SLINSNVHL

ALITHLN QIAOWYD

\
¢ce

%%\

.

SINELINOILLOY 30110vYd 1534 40 SLSITaing
TAATTHSIY ¥ NO 035v8 WILSAS HOVE 34008

A AT AVIVA V LNOHLIM S1ONA0H ONINNNY SWILSAS ©

SHOIHD
HLTY3H Q30ONZWNOCOTN LNOHLIM ONINNNY SWJLSAS ~

ISYITFY LONA0H] A373AITHIVE V ONINNNY SWHLSAS @
QATIVLSNI L¥OXId J3033N V LOOHLIM ONINNNY SWALSAS

oG

FONVNILNIVI SY ¥ 0313AFTHOVE ONINNNY SWILSAS

G3TIVISNE d1d 3d V HLIM ONINNNY SWILSAS

Q3TIV.ISN! dtdd V LNOHLIM ONINNNY SWFLSAS

Qmjﬁwz HdiH ¥V LNOHLIM ONINNMY SW1SAS

TONIMOHS JdYOaHSYU NILSASILINW Y m_._.<a_3n_0n_

OS2 ‘QIAONYD "SI VO NOY4 V1IVA FZATYNY/ILYTIHH0D
ANVISISSY INJWIOYNYIN INVMIAOS

o O

&

O\

L]

\

US 9,116,597 B1

Sheet 4 of 15

Aug. 25,2015

U.S. Patent

V¥ Ol
0zy
N oLy
o_,é ,/.
a0 Olo Qo Qo Qo Op O Oy O\© B AN
SHYD ®lim ®le Glo ®lo @ ®le Mo & W3LSAS VO
OX80 oy ! WOOX
037 oy oY Z 3dVLA
WL TIVLSNI 0 SWL
0 MIINSAS
0 YOAIONS
SHVD TIviSNG | 03z #9ud oy oY y Y
SHYD ®lz e Ol Oy ®oe Ole ®le @ @ | wasasAza
SHYD @lvn Dle @lo Wle W ®lo @l ®| @ TIOYAYd
TYAVONINNAY | G3033N | MO SHHO | arva | HOLww |onissiu | oninnny | onissim || 13aTn
13737 Y LVOXI4 | HiVaH | SdWT | vad | sdud $3d syadH || st INVN
S3RIVHEN NOILND3XT ! WNLSAS
Al MIIA WILSAS

00

US 9,116,597 B1

Sheet 5 of 15

Aug. 25,2015

U.S. Patent

gy Ol
oey
S - 05
, /
SO Blo Oe Qo @ B Blo B0 @] awnaonus
SHYO @lwn Dl Ble O Bl @ o | aungonmds
0 9Xa9 E e
03z 0 Q3rddv
SWIL TIVLSNI
SHYO TIVASNI | 03z 0¥ ano3
SHYO Oz ®lo Wi Ols W Gle ®|¢ wo anng Tiv4
SYVO @lun @Dloe @lo Wle @l Wl @lo @[acunaonids
WAV TIVISNI | 03033N | O SyHO | anva | HOLw | onissii | oNINNny | onissiv
TAZISY | L¥OXi3 | HITVBH | SdW1 | vad | Sdd 34 | SyadH JNN
STIMVHEN NOILYTIVLSNI
/N INVISISSY INFNIOVNYIW IHYMLI0S
00

9,116,597 B1

U.S. Patent Aug. 25, 2015 Sheet 6 of 15 US
START
N 510
v ~
RECEIVE DATA
v 520
PARSE DATA FOR MAINFRAME
SYSTEM ERROR INFORMATION
! 530
QUERY SUPPORT DATABASE |/
USING ERROR INFORMATION
545
_
DOWNLOAD
SOLUTION FROM
ERROR IN SUPPORT = SUPPORT
DATABASE
580
IS
DOWNLOAD 8 550 SYSTEM SET
PROBLEM PROBLEM UP FOR AUTOMATIC N
FROM ASSOCIATED WITH SOFTWARE P
555 NO 585
OPEN NEW PROBLEM TICKET RECEIVE QTPFP“CABLE
560 -/
| v 590
UPLOAD NEW ERROR APPLY RECEWED PTF
7| INFORMATION TO SUPPORT T
570 DATABASE - 595
DEPLOY PTF

FIG. 5

U.S. Patent Aug. 25, 2015 Sheet 7 of 15 US 9,116,597 B1

FROM 510
(FIG. 5)

ALL DATAPARSED?

PARSE DATA FOR KEYWORD 4
ASSOCIATED WITH MAINFRAME
ERROR

l

KEYWORD FOUND? ™,

RECORD KEYWORD AND 640
ASSOCIATED VALUE AS ERROR
INFORMATION

T0 530
(FIG. 5)

FIG. 6

US 9,116,597 B1

Sheet 8 of 15

Aug. 25,2015

U.S. Patent

W«!

N

L 94
MOVLS INVHANIVIN HOd SIRVHEIT INILNNY
N oE
SAHOOIM INSSI MAN.~ gee
SANOI3Y NOILLNI0S A ; _me
SAHOO3Y NI1E0Hd
'SY HONS NOILYWHO AN
SLWSNYHL ONY S1O3TI00 INVLSISSY INTWIDVYNYIW NI180¥8d
01 S1ONA0Yd ¥ 404 NOILYWHO AN HOMYI 40 JIL SLINSNYXL
INFINO LH0ddNS ¥2
4 J343 WBI HOANY (XOg-MOY18) FUNLAYD LNIAT MIIASAS

=
0cl

Wv\

N

NOLLYWHOAN! HOHH3-40-9NIL
THL GvOTdN ANY HINOLSND 3HL 40 TvHIE NO 3NSSEM3N ¥V NIHO TIM VN4 38713 =
(HYO8HSY(3HL 31vaddn

NV WiNd OL OANI WF1804d 3HL QYO INMOQ ‘Av3LENI ONNOA St QHOOTY WIE0Md VAl »

GdvVOgHSYA 3HL 31vadn
ANV W52 ¥D OL 41d ONIATOS 3N FHL GYOINMOQ 'ONNO4 S GHOOIH NOILNOS V 4 »
€003 WH180Md HO J¥OOIH NOILATOS ONIHOLYIW ¥ ANI4 OL INIINO 1¥0ddNs

AYAND OL VIHALRIO HOWVAS QHOMAZN QNG OL NOILYIWMOINI HOMYF-40-3WLL IHL FZATYNY

(013 'Viva 4343
‘SANVYIWNGD/STOYSSIN FTOSNOD SANNTOAS) NOLLYIWHOAN! HOMNI-40-3NIL IHL FUNLAVD

TIM YNd SHND00 FANTVA ¥ NIHM

INVISISSY INGWIDYNYIN WE180Hd

o]

]

/

/

\

(1194

US 9,116,597 B1

Sheet 9 of 15

Aug. 25,2015

U.S. Patent

8 9l
09p
4028 B0Z8 018
/ \ owv ;
i INON anoN [N\ @) avT AN
INON INON WILSAS VO
31¥a |Hsiand | omiaos | anon | 3iva [Hsnend | oniaoo | oxad | o WODX
INON INON | 0 3dVLA
INON INON | 0 SWL
INON INON | 0 MIIASAS
VA [is3L | uvay | 22 INON | 0 MOAJONT
Jiva |ongagd | Nado | iz INON | ¥ 10V
INON 3INON W3LSAS A3Q
INON aoN | TI0MAYd
NOILOY NOILOY

INNOD INYN
1399VL | LN | SnUvLS | 3nssi | 13owve | DN | Snavis | 3nss | ghus ML

7 ALIMIAIS | ALINIATS
NOVHLSINNGY. M3 WILSAS

/N INVLSISSY INIWIDYNYIN W3 TH0Nd

008

U.S. Patent Aug. 25, 2015 Sheet 10 of 15 US 9,116,597 B1

| SEARCH SUPPORT DATABASE FOR | /10
> SUPPORT RELATED INFORMATION

920

NEW
SUPPORT RELATED
INFORMATION ~_oo®
FOUND? o

YES

DETERMINE LOCATION OF ye 930
SUPPORT RELATED INFORMATION

GENERATE URL OF SUPPORT | /~ 940
RELATED INFORMATION

v 950
INSERT URL IN USER INTERFACE S

FIG. 9

U.S. Patent Aug. 25, 2015 Sheet 11 of 15 US 9,116,597 B1

950

FROM 940
(FIG. 9)

1010

DETERMINE PRIORITY LEVELOF |/
SUPPORT RELATED INFORMATION

1020
DETERMINE LOCATION INUSER |/
INTERFACE THAT CORRESPONDS
TO PRIORITY LEVEL

A

e 1030

POPULATE DETERMINED

LOCATION WITH URL OF SUPPORT
RELATED INFORMATION

FIG. 10

US 9,116,597 B1

Sheet 12 of 15

Aug. 25,2015

U.S. Patent

W‘

.

LINZINOD
3HL TV HO4

30UN0S AGYINRAd

ANFINO
1H¥0ddNS VO

\

0ve

0Ll

L1 Old

LY
SINIWNOO0A IOAFTMONN A

S03AIA F8NLNCA OL-MOH A

(s0Gd) SONYHD 200 LONA0Ud
SIATIHEHMO0E 000 LONA0Hd A~

03033N NIHM Qv3 - TYIIFLYIN SONIH343

e
SA334 VI3IW TVID0S A
SINOOY LVYHO 'SON3d SILINAWNOD FNYHANIVIN A
‘SNOISSTS INITNO Sdfl0¥0 ¥3sn A+
‘SINOOYMOHS YN SSIANAVI FNVHANIVIN AVA A
‘YALSIOTH OL SHNEUM JTIOM YO~
STYRIZLYW FAILISNAS ANLL - SSINFAVMY
oL A
ST3AFT SH YO MANA
(svdd) SLYTTY HOHYI LONCOYd A
SNOILYOIFILON dddiH .~
OL ANZL 1SNV - SNOLLOVY ANV SLHFTY
‘A8 QFZINVOHO
QNY ‘AIZILIMO0IYd "GFZIM0D3LYO 38 TUM INIINOD Ty *
d3AvYS

aNY 'GILYLONNY ‘O3NYYINM00E 38 NYD NOLLYWHOANIFHL TV »
{YWd) INVLSISSY INIWIOVNYIN WIT80Yd
ONY (YAS) INYLSISSY INIWIDYNYIN FHVMLIOS SY T13M SY
Ad0DFLYD AG 050 WOHd INZINOD NOILYIWHMOINI JHL STZINYOYHO #
INVISISSY INFWIDVNYIN NOLLYIWHOANI

US 9,116,597 B1

Sheet 13 of 15

Aug. 25,2015

U.S. Patent

oz Vel 9l
0Lzl
JIVAAVA NMONMNG | NAAONYND | NAMONMNG | NMONYND [NMONMNO | NMONMNN gy AN
JiVAAVA 0 0 0 0 0 0 A WILSAS VO
0 0 0 0 0 avaunn |0 av3dnn|| € WOOX
0 0 0 0 boavad | L av3dnn|| € JdVIA
ISVITEY M3AN 0 0 0 0 0 0 0 SIWTL
0 0 0 0 0 0 0 M3IASAS
0 0 0 0 0 0 0 ¥OAIANT
SY Y0 0 0 b Qvaunn | 0 b avy3uNn | L avaenn|| v 30V
JIVAAYD 0 0 i B0 e SV e LA 2| WALSAS A3Q
JiVAAVQ 0 0 0 0 0 0 S TIOYAYd
MO SHHD arva HOLYI ONISSHN | ONINNNY | ONISSIIN || 13A31
AHOLSIHIDIAYIS | HLTvAH Sl vad Sd¥d $3d SHIIH O4NI INYN
SNOILOY ONY SLYT TV WALSAS
) A MIAWILSAS
AN INYLISISSY LININIDYNYIN NOLLYWHOAN

00Z1

US 9,116,597 B1

Sheet 14 of 15

Aug. 25,2015

U.S. Patent

gcl old
743 ogelh
0 Advdan } 0 b Z 0 gV1AN
HSV1d SMaAN 0 Advdan 0 210 0 VS 2 WALSAS VO
} A13HS 0 L AN 0 0 b avIENn WOIX
0 A19HS 8 9ns 0 0 0 0 AdVLA
sgid 0 A1IHS 8] 0 vy OLMOH| € avay SWL
Z34d ldd 0 F13HS g 0 L IvHS |0 0 MIIASAS
SOL MOH 0 F13HS Z WIS Z NIV 0 0 0 HOAJANT
S934 SN 14 413HS 4] £ P10 o ¥ 40V
SWALI SNCMYA | 0 AAVHEN 8 SN0 b Sy A2 NALSAS ADd
3gniNoA 0 AdvYHa g ¢ 14 A 0 TIOYAYd
SINZIWA20A SIATIHS VI 80334 SdNoYo XNNET
FOAATMONA §00d ¥004 WI00S | YiVA SSY H3sN WININ {AVHS JNYN
TyIHILYIN JONTHI4T FALLISNIS AL 7 SSANTHYMY
MIIAWILSAS

AN INYISISSY INFWIFOYNYIN NOLLYINHOAN]

00z}

US 9,116,597 B1

Sheet 15 of 15

Aug. 25,2015

U.S. Patent

PN

el Ol
gigl 9ig) pLel Zi8l
S S S
Haldvay VLS
MSOMLIN of YIQ3N
J19YAONTY
A A A
< v v : v
A
snd
obel 4
390149
806"
9061 i
< f * x >
SNE W3LSAS
h 4 A
AHONEN dn
< S
pOgl 2081

US 9,116,597 B1

1
INFORMATION MANAGEMENT SOFTWARE

BACKGROUND

The present disclosure relates generally to computers and,
more particularly, to systems and methods for managing com-
puter systems.

Various software components control the operations of
computer systems. For example, operating systems (OS)
manage computer hardware resources and provide common
services for various computer programs or modules that are
installed on a particular computer system. To the extent that
computer systems are connected to a network, it is now pos-
sible to provide software (e.g., OS, programs, modules, etc.)
and other services over the network, with ongoing efforts to
improve over-the-network delivery of software and services.

SUMMARY

According to various aspects of the present disclosure, a
machine-executable process in a mainframe system is pro-
vided. The process comprises (optionally repeatedly) search-
ing a support database for new support related information.
The process also comprises determining a location of the new
support related information and generating a user-selectable
Universal Resource Locator (URL) of the determined loca-
tion. The process still further comprises inserting the gener-
ated URL into a user interface.

According to still further aspects of the present disclosure,
amainframe system is provided. The mainframe system com-
prises a support database and an information management
assistant communicatively coupled to the support database,
the information management assistant operative to (option-
ally repeatedly) search the support database for new support
information, the information management assistant operative
to further generate a URL associated with the new support
information, the information management assistant to further
display the generated URL in near-real time.

According to still further aspects of the present disclosure,
a computing device is configured to execute computer code to
generate a graphical user interface. The graphical user inter-
face comprises a first segment comprising a first ordered
listing of entries, the first ordered listing of entries comprising
a first user-selectable entry, the first user-selectable entry
comprising a first hyperlink to information associated with a
first condition, the first condition having a first risk level. The
graphical user interface also comprising a second segment
that is visually separate from the first segment, the second
segment comprising a second ordered listing of entries, the
second ordered listing of entries comprising a second user-
selectable entry, the second user-selectable entry comprising
a second hyperlink to information associated with a second
condition, the second condition having a second risk level, the
second risk level being less than the first risk level.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart showing an embodiment of a process
for managing software in a mainframe system.

FIG. 2 is a flowchart showing another embodiment of a
process for managing software in a mainframe system.

FIG. 3 is a diagram showing various system components
that are associated with an embodiment of management soft-
ware referred to herein as a Software Management Assistant
(SMA).

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 4A and 4B are diagrams showing an embodiment of
a graphical user interface (GUI) associated with the SMA of
FIGS. 1 through 3.

FIG. 5 is a flowchart showing an embodiment of a process
for managing system problems in a mainframe system.

FIG. 6 is a flowchart showing another embodiment of a
process for managing system problems in a mainframe sys-
tem.

FIG. 7 is a diagram showing various system components
that are associated with an embodiment of management soft-
ware referred to herein as a Problem Management Assistant
(PMA).

FIG. 8 is a diagram showing an embodiment of a GUI
associated with the PMA of FIGS. 5 through 7.

FIG. 9 is a flowchart showing an embodiment of a process
for managing support information in a mainframe system.

FIG. 10 is a flowchart showing another embodiment of a
process for managing support information in a mainframe
system.

FIG. 11 is a diagram showing various system components
that are associated with an embodiment of management soft-
ware, referred to herein as an Information Management
Assistant (IMA).

FIGS. 12A and 12B are diagrams showing one embodi-
ment of a GUI associated with the IMA of FIGS. 9 through
11.

FIG. 13 is a schematic showing one embodiment of a
computer system comprising computer readable program
code for executing any of the processes described with refer-
ence to FIGS. 1 through 12B.

DETAILED DESCRIPTION

According to various aspects of the present disclosure,
some embodiments comprise the steps of repeatedly search-
ing a support database for new support related information,
determining a location of the new support related informa-
tion, generating a user-selectable Universal Resource Locator
(URL) of the determined location, and inserting the generated
URL into a user interface.

Hardware resources for many (if not all) computer systems
are controlled by software, such as operating systems (OS),
which provide common services for other installed computer
programs or modules. Often, software and other services are
provided through a network, such as the Internet. While over-
the-network services have become somewhat ubiquitous,
there are certain contexts in which those services may become
unmanageable.

In mainframe systems (e.g., Z7OS environment, etc.) that
are capable of supporting multiple services and devices, it is
possible that the sheer quantity of updates and alerts can
overwhelm the systems programmers (SYSPROGs) that are
tasked with managing those mainframe systems. For
example, mainframe systems may receive thousands of
updates, patches, fixes, or other notices every year. The vol-
ume of information that competes for the system program-
mer’s attention is oftentimes unwieldy and can result in the
system programmer overlooking a critical system-related
issue.

Compounding to the volume are the qualitative factors,
such as the degree to which a particular alert or update can
affect a particular mainframe system (e.g., critical system-
related alerts, software patches, information updates, etc.).
Given these complexities, sometimes it becomes tedious and
cumbersome to properly apply all of the updates, patches, and
other fixes that are recommended or required for optimal
system performance.

US 9,116,597 B1

3

It is to this and corresponding shortcomings that the dis-
closed embodiments are directed. Namely, the disclosed
embodiments provide systems and methods for managing
computer systems by providing a system programmer with a
visual display and a user interface that identifies certain issues
and allows the system programmer to readily apply fixes,
patches, and other updates without tediously sifting through a
mountain of information and manually addressing those
issues. This provides a more streamlined approach for the
system programmer and reduces the possibility of overlook-
ing a particular issue that may adversely affect the system.

Specifically, some embodiments include a management
application referred to herein as a Software Management
Assistant (SMA), which collects all relevant software-related
issues in a mainframe system and displays them at a user
interface in easily-discernible categories, preferably in near-
real time. Thus, the SMA provides a system programmer with
a way to address software-related issues as they arise. Other
embodiments include a management application referred to
herein as a Problem Management Assistant (PMA), which
identifies problems or errors in a mainframe system and dis-
plays those errors to the system programmer in near-real time.
Similar to the SMA, the PMA provides an easy-to-use inter-
face for the system programmer to view and address problems
in a mainframe system in near-real time. Still other embodi-
ments include a management application referred to herein as
an Information Management Assistant (IMA), which aggre-
gates and displays information relating to a mainframe sys-
tem in near-real time. Although each of these embodiments
(e.g., SMA, PMA, and IMA) is individually discussed in
greater detail below, it should be appreciated that, in yet other
embodiments, the SMA, PMA and IMA can be used in vari-
ous combinations to provide a more robust service to the
system programmer. With this in mind, attention is turned to
FIGS. 1 through 13, which describe example embodiments of
the SMA, PMA, IMA, and example combinations of these
components in greater detail.

Software Management Assistant (SMA)

As noted above, given the volume (and sometimes com-
plexity) of software issues that are unique to mainframe sys-
tems, a system programmer may become overwhelmed when
attempting to address every software-related issue. Currently,
there exists no streamlined approach that assists the system
programmer with such tedious (yet important) day-to-day
tasks. To relieve the system programmer of some of the rou-
tine tasks, some of the disclosed embodiments are directed to
a Software Management Assistant (SMA), as shown with
reference to FIGS. 1 through 4. The SMA collects all relevant
software-related issues in a mainframe system and displays
them at a user interface in easily-discernible categories, pref-
erably in near-real time, thereby providing the system pro-
grammer with a way to address software-related issues as
they arise. This, in turn, results in fewer (if any) overlooked
tasks and easier management of software.

With this general overview of the SMA in mind, attention
is turned to FIG. 1, which is a flowchart showing one embodi-
ment of a process for managing software in a mainframe
system. As shown in FIG. 1, this embodiment of the process
begins by collecting 110 data that is indicative of a condition
that impacts a mainframe system. By way of example, the
condition may range from a High-Impact PERvasive
(HIPER) condition to an uninstalled update for licensed soft-
ware.

Continuing with FIG. 1, upon collecting 110 the data, the
process evaluates 120 a degree to which the condition impacts
the mainframe system. Using the previous example, the
degree to which a HIPER condition impacts the mainframe

10

15

20

25

30

35

40

45

50

55

60

65

4

system would be high, since a HIPER condition can result in
catastrophic effects on the mainframe system. Conversely,
the degree to which an expired licensing key impacts the
mainframe system may be comparatively minimal. For some
embodiments, the evaluation 120 may entail applying a pre-
defined set of rules for various conditions. For other embodi-
ments, the evaluation 120 may entail parsing data that is
associated with the condition to determine if the data itself has
an indicator of a risk level. Regardless, the evaluation 120
process can provide information on new product releases to
be applied, service items to be executed, software items to be
removed, software licensing keys to be updated, operating
status updates, etc.

The process next determines 130 an actionable task that is
associated with the condition. For example, a HIPER condi-
tion may require downloading and installation of a Program
Temporary Fix (PTF) as its actionable task. As yet another
illustrative example, an expired licensing key may simply
require an update of the license as its actionable task. Indeed,
a corresponding actionable task is assignable for a plethora of
conditions that can arise in the mainframe system (e.g.,
HIPER, PTF, PTF-in-Error (PE), PTF Resolving PE PTF
(PRP), Product Error Alerts (PEA), Product Document
Changes (PDC), Fix Categories (FIXCAT), License Man-
aged Program (LMP) key expiration, etc.).

The process next places 140 an entry in an ordered listing,
where the entry represents the condition. Additionally, the
entry is placed 130 in the ordered listing based on the degree
to which the condition impacts the mainframe system. Thus,
for example, an entry that represents a HIPER condition
would be placed before an entry that represents a PDC in the
ordered listing. The entry, for some embodiments, also rep-
resents the degree to which the condition impacts the main-
frame system as well as the actionable task that is associated
with the condition.

The ordered listing is then displayed 150 on a user inter-
face, preferably a graphical user interface (GUI), through
which a user (e.g., system programmer) may provide input. If
the user provides no input, then the process continues to
collect 110 data, evaluate 120 conditions, determine 130
actionable tasks, place 140 entries in the ordered listing, and
continually update the user interface. One embodiment of the
GUTI is described in greater detail with reference to FIGS. 4A
and 4B.

However, if a user provides an input, then the process
continues to FIG. 2. As shown in the flowchart of FIG. 2, the
process receives 210 the user input through the user interface.
In response to the user input, the process executes 220 the
actionable task. Once the actionable task is executed 220, the
process may clear 230 the entry. By way of example, the entry
can be cleared 230 by deleting the entry from the system,
removing the entry from the user interface, marking the entry
as being completed, moving the entry to a different location
on the user interface, or changing the appearance of the entry.
The ordered listing is automatically updated when the entry is
cleared 230. In other embodiments, the entry is cleared by
another management application, e.g., the IMA. The pro-
cesses of FIGS. 1 and 2 provide for near-real time updates of
software conditions and allow a user to address those condi-
tions on-the-fly.

Having described several embodiments of processes for
managing software, attention is turned to FIG. 3, which
shows an embodiment of various system components that are
associated with the SMA. Specifically, FIG. 3 shows a main-
frame system z/OS environment that is supported by compo-
nents from CA Technologies®. While specific CA Technolo-
gies® components are shown in FIG. 3, it should be

US 9,116,597 B1

5

appreciated that this particular environment is only used to
more-clearly illustrate the various embodiments disclosed
herein, and one having skill in the art will appreciate that the
processes, systems, and interfaces described herein are appli-
cable to other mainframe environments.

With this in mind, the embodiment of FIG. 3 comprises the
SMA 310, which collects the data from various sources, such
as, for example, a mainframe software manager 320 (e.g., CA
Chorus™ Software Manager (CSM)) with System Modifica-
tion Program/Extended (SMP/E from IBM®) target libraries
325, an online support database 340 (e.g., CA Support Online
(CS0)), and a software module utility 330 (e.g., CAMODID
Utility) with runtime libraries 335. The collected data is
populated into a GUI, such as a dashboard, which shows
various mainframe system conditions, such as, for example,
HIPER, PTF, PE, PRP, PEA, PDC, FIXCAT, LMP expiration,
etc.

Since the CA CSM 320, the CAMODID 330, and the CA
CSO 340 are known in the art, only a truncated discussion of
these components is provided to more-clearly illustrate the
understanding of the SMA 310. Specifically, the CA CSM
320 provides a standardized set of software management
services that permit a system programmer to acquire, install,
deploy, configure, and maintain mainframe software. As
such, the CA CSM 320 includes LLoad MODules (LMOD),
other service elements, and their corresponding information.
This information is collected by the SMA 310, either by
querying the CA CSM 320 for software updates or installs
(pulling the data), or alternatively by having the CA CSM 320
push the data to the SMA 310.

The CAMODID 330 manages the runtime libraries 335 for
mainframe stack products. As such, the CAMODID 330
includes information on LMOD PTF levels for each LMOD
on each mainframe system. The SMA 310 also collects this
information from the CAMODID 330 by either pulling the
information or having the CAMODID push that information
to the SMA 310.

The CSO 340 provides technical and customer support
online for technical product resources, implementation and
upgrade of products, notifications and updates on software,
product documentation, and a host of other online support
features. As such, the CSO 340 includes service elements
such as HIPER, PEA, PE, PRP, PDC, FIXCAT, etc. These
service elements are collected by the SMA 310 in a similar
manner to how the SMA 310 collected data from the CAMO-
DID 330 and the CA CSM 320.

Once the SMA 310 collects the data from the CA CSM
320, CAMODID 330, and the CSO 340, the SMA 310 gen-
erates an ordered listing of system conditions, such as those
shown in FIG. 3. The SMA 310 also provides actionable tasks
to the user based on how a particular item will impact the z/OS
mainframe system. For example, the ordered listing may
include systems running: without a HIPER installed; without
a PRP installed; with a PE PTF installed; without a FIXCAT
installed; without a recommended health check; products
without a valid LMP key, etc. The ordered listing is displayed
on a user interface, and is updated in near-real time as new
updates or fixes are collected from the CA CSM 320, CAMO-
DID 330, or CSO 340.

Referring to FIGS. 4A and 4B, an example embodiment of
the user interface is a GUI 400 that has multiple user-select-
able icons. For clarity, the GUI 400 of FIGS. 4A and 4B is
specific to a z/OS environment that is operating with CA
Technologies® products and services, such as that shown in
FIG. 3. However, similar principles apply to other mainframe
system environments, and that the GUI 400 is not intended to
be limited to only CA Technologies® products and services.

10

15

20

25

30

35

40

45

50

55

60

65

6

With this in mind, the GUI 400 comprises an ordered
listing 410 of conditions associated with different systems,
such as, for example, a payroll system, a quality assurance
system, development systems, etc. Furthermore, for purposes
of'illustration, the GUI 400 is separated into execution librar-
ies 420 and installation libraries 430. These libraries 420, 430
comprise notifications that alert a system programmer of
mainframe system conditions, such as, for example, missing
HIPER, running PE, missing PRP, PEA mismatches, invalid
LMP, health check statuses, needed FIXCAT, etc. As shown
in FIGS. 4A and 4B, the HIPER is located first, since a HIPER
condition can catastrophically affect a mainframe system,
and the LMP alert is located later (e.g., to the right of the
HIPER), since an invalid LMP does not have the same impact
on the mainframe system as a missing HIPER.

The GUI 400 also comprises multiple icons 440, 450, 460,
which are indicative of different mainframe system condi-
tions for each alert or notification. For example, a checkmark
icon 450 may indicate that the mainframe system is operating
without any issues, while an X-mark icon 460 may be indica-
tive of a critical system-related condition that needs to be
addressed by the system programmer, while a warning icon
440 may indicate a less-critical system-related condition. As
such, the type of icon is indicative of a risk level associated
with the mainframe system. For some preferred embodi-
ments, the icons 450, 460 comprise hyperlinks or some other
type of embedded Universal Resource Locator (URL) to soft-
ware programs, such as PTF, which can be executed to rem-
edy the condition.

The example data in the dashboard illustrated in FIGS. 4A
and 4B illustrate, for example, that the payroll system is
running without any issues and, hence, the system program-
mer does not have any actionable task associated with the
payroll system. Conversely, the installation library 430 shows
that the development system has, for example, three (3) miss-
ing HIPER, two (2) needed FIXCAT, etc., all of which needs
the attention of the system programmer. Since the X-mark
icons 460 comprise hyperlinks to PTF or other programs that
can remedy these conditions, the system programmer can
execute the necessary actionable tasks by selecting the cor-
responding X-mark icon 460. Upon selecting the X-mark
icon460 and triggering the program associated with the URL,
the SMA 310 (FIG. 3) clears the condition.

Using another example, the quality assurance (QA) system
shows a less-critical system-related alert 440, which can arise
from a discrepancy between the execution library 420 and the
installation library 430. As shown in FIGS. 4A and 4B, the
execution library shows that there are no conditions that
require the attention of the system programmer (i.e., all icons
in the execution library 420 are checkmark icons 450). How-
ever, the installation library 430 shows one icon 460 showing
a PE running from a prior build. This discrepancy between the
installation library 430 and the execution library 420 results
in a warning icon (exclamation-mark) 440, which alerts the
system programmer of the discrepancy.

By providing such a user-friendly GUI 400, the SMA 310
(FIG. 3) permits a system programmer to efficiently correct
various conditions that impact a mainframe system to differ-
ent degrees. Thus, unlike prior practice, where the system
programmer drudged through the menial task of manually
identifying the condition, searching for corresponding
actionable tasks to remedy the condition, and then executing
actionable tasks, the embodiments of FIGS. 1 through 4B
provide processes, systems, and user interfaces that stream-
line mainframe system updates and maintenance.

US 9,116,597 B1

7

Problem Management Assistant (PMA)

Referring generally to FIGS. 5 through 8, several embodi-
ments illustrate of processes, systems, and user interfaces for
a Problem Management Assistant (PMA). As described in
greater detail herein, the PMA identifies problems or errors in
a mainframe system and displays those errors to the system
programmer in near-real time. Analogous to the SMA 310,
the PMA provides an easy-to-use interface for the system
programmer to view and address problems in a mainframe
system in near-real time. Unlike the SMA 310, the PMA is
directed to identifying errors (or failures or problems), gath-
ering documentation for the errors, and searching for possible
solutions. To place some context on the function of the PMA,
mainframe systems can experience thousands of system
errors annually. Consequently, manually addressing these
errors can become a time-consuming task for a system pro-
grammer, and the PMA is directed to relieving some of this
burden.

Referring specifically to FIG. 5, a flowchart illustrates an
embodiment of a process for managing system problems in a
mainframe system. The illustrative process begins by receiv-
ing 510 data. To the extent that the process operates within a
mainframe system environment (e.g., Z/OS environment), the
data can be received from error-reporting programs, such as,
for example, Environmental Record and Editing Printing
(EREP) program by IBM®, or mainframe environment man-
agement programs, such as, for example, CA-SYSVIEW®
program by CA Technologies®. Similar to the SMA 310
(FIG. 3), the data can be pulled by the PMA or pushed to the
PMA by the error-reporting programs.

Upon receiving 510 the data, the process parses 520 the
data for mainframe system error information. The error infor-
mation is used to query 530 a support database, such as, for
example, CSO 340 (FIG. 3). Since support databases, such as
the CSO 340 (FIG. 3) are discussed with reference to FIG. 3,
only a truncated discussion is provided here with reference to
FIG. 5.

Once the support database is queried 530, the process
determines 540 whether a solution exists in the support data-
base. If a solution exists in the support database, then the
process downloads 545 the solution from the support data-
base. Ifa particular system is not set up for automatic software
installation, then the process repeats by receiving 510 addi-
tional data. If the system is set up for automatic software
installation, then the process receives 585 an applicable PTF
(or other software fix), applies 590 the received PTF, and
deploys 595 the PTF. Thereafter, the process repeats by
receiving 510 additional data.

Continuing, if the solution does not exist in the support
database, then the process determines 550 whether the error
or problem exists in the support database. If the error exists in
the support database, then the process downloads 555 the
problem from the support database. If neither the solution nor
the problem exists in the support database, then the process
opens 560 a new problem ticket, and uploads 570 the error
information (or problem information) to the support data-
base. Thereafter, the process of FIG. 5 repeats. As shown from
the embodiment of FIG. 5, the process automatically initiates
aresolution process, rather than requiring a system program-
mer to manually research and apply a solution.

Referring to FIG. 6, a flowchart illustrates an example
approach to implementing the process of parsing data (520 in
FIG. 5). As illustrated, the parsing process begins by deter-
mining 610 whether or not all of the available data has been
parsed. If all of the available data has been parsed, then the
process exits to the beginning of FIG. 5. Conversely, if all of
the data has not yet been parsed, then the process parses 620

10

15

20

25

30

35

40

45

50

55

60

65

8

the data for a keyword associated with a mainframe error, and
determines 630 if the keyword is found in the data. If the
keyword is not found in the data, then the process returns to
determine 610 if all of the data has been parsed. If, however,
the keyword is found, then the process records 640 the key-
word and any associated value as error information.

To more-clearly illustrate the embodiment of FIG. 6, some
examples of known keywords and values in SYSVIEW® or
EREP programs are:

EXAMPLE KEYWORD EXAMPLE VALUE
JOBNAME DATACOM
ABEND 0Cc4

OFFSET 1C8

PROGRAM NAME DBLOADI12

Thus, for these keywords and values, the process would build
a search argument, such as, for example,
“JOBNAME=DATACOM, ABEND=0C4, OFFSET=1CS,
PROGRAM NAME=DBLOADI12.” This search argument
would be used to query 530 (FIG. 5) the CSO 340 for possible
solutions or problems.

Depending on the desired granularity, the process may be
implemented to take different actions based on whether there
is an exact match, close match, poor match, or no match. And,
the degree to which the search query matches an entry in the
support database can be based on a predefined set of rules, or
other programmable metric.

Referring to FIG. 7, which shows an embodiment of vari-
ous system components that are associated with a Problem
Management Assistant (PMA) 710. Similar to the description
of'the SMA 310 (FIG. 3), for purposes of clarity, the PMA 710
is described in detail with reference to a z/OS environment
having CA Technologies® services and products installed.
Thus, the embodiment of FIG. 7 comprises a PMA 710, a
CSO 340, and an error-reporting program 720, such as EREP
or SYSVIEW® program.

When a failure or error occurs in the z/OS mainframe
system, the PMA 710 receives the error information from the
SYSVIEW® or EREP program 720. Again, the error infor-
mation canbe pulled from the SYSVIEW® or EREP program
720, or alternatively the SYSVIEW® or EREP program 720
can push the error information to the PMA 710. Once the error
information is received, the PMA 710 analyzes the error
information to build a keyword search criteria.

That keyword search criteria is used to query CSO 340 to
find a matching solution record or a matching problem record,
as shown in the process of FIG. 6. If a solution record is found,
then its corresponding solution (e.g., resolving PTF) is down-
loaded to the CA CSM® 320 (FIG. 3) and a hyperlink to the
downloaded PTF is displayed on a GUI, such as that shown in
FIG. 8. If no solution is found, but the same (or similar)
problem is found, then the PMA 710 downloads the problem
information and a hyperlink to the downloaded problem
information is displayed on the GUI. Otherwise (when nei-
ther the solution nor the problem are found in the CSO 340),
the PMA 710 opens a new issue, uploads the new issue to the
CSO 340, and updates the GUI to reflect the new issue.

One embodiment of the PMA GUI 800 is shown with
reference to FIG. 8. As shown in FIG. 8, the GUI 800 com-
prises an ordered listing 810, similar to that shown in FIGS.
4 A and 4B with reference to the SMA 310. Additionally, the
GUI 800 comprises risk level segments 820a, 8205 (collec-
tively 820) that are arranged in order of severity or risk level.
Thus, for example, severity-1 would indicate issues that can

US 9,116,597 B1

9

have a high impact on the mainframe system, severity-2
would indicate issues that have a lesser impact on the main-
frame system, etc. Each risk level segment further comprises
an ordered listing of the error, if any, its corresponding status,
a recommended (or required) actionable task to remedy the
error, a target, etc.

The specific example of FIG. 8 shows that there are no
errors or issues with a payroll system, but there are four (4)
problem counts that are associated with some development
system components. As such, there is an X-mark icon 460 in
the development system segment to indicate the errors, while
a checkmark icon 450 exists in the payroll system segment to
indicate that payroll system is error-free. When the system
programmer selects the X-mark icon 460, the PMA 710 (FIG.
7) searches for the solution in the CSO 340 and takes appro-
priate action, as described with reference to FIGS. 5 and 6.

Similar to the SMA 310 (FIG. 3), by providing such a
user-friendly GUI 800, the PMA 710 (FIG. 3) permits a
system programmer to efficiently handle errors and fixes,
which were previously applied through manual identification
and resolution. Thus, the embodiments of FIGS. 5 through 8
provide processes, systems, and user interfaces that alleviate
the work of the system programmer in maintaining a main-
frame system that is largely error-free.

Information Management Assistant (IMA)

In addition to the SMA 310 (FIG. 3) and the PMA 710
(FIG. 7), another embodiment includes an Information Man-
agement Assistant (IMA), which aggregates and displays
information relating to a mainframe system in near-real time.
Given the sheer volume of software updates and errors (some-
times in excess of tens of thousands of total items annually for
mainframe systems), the amount of information and docu-
mentation generated from these errors, updates, fixes, etc. can
be overwhelming to a system programmer. The IMA is
directed to providing the system programmer with a conve-
nient interface to manage all of this information.

Referring to FIG. 9, a flowchart illustrates an embodiment
of a process for managing support information in a main-
frame system. The illustrative process begins by searching
910 a support database, such as a CSO 340, and determining
920 whether new support related information is found in that
support database. If no new support related information is
found, then the process ends. However, if new support related
information is found, then the process determines 930 a loca-
tion where the support related information is found. Using
that location, the process generates 940 a Universal Resource
Locator (URL) for the support related information, and
inserts 950 the URL into a user interface.

Referring to FIG. 10, a flowchart illustrates, in greater
detail, an embodiment of a process for inserting the URL into
the user interface (e.g., see 950 in FIG. 9). The process deter-
mines 1010 a priority level of support related information. For
example, the priority level can be noted as critical (which
would relate to HIPER, PEA, and other items that have a high
impact on a mainframe system), time-sensitive (which would
relate to social media feeds, calendared events (e.g., meet-
ings, conventions, social media events, etc.), reference mate-
rials (e.g., documentation, books, online links, etc.), or any
other desired category. Upon determining 1010 the priority
level, the process determines 1020 the appropriate location
within the user interface that corresponds to the priority level,
and populates 1030 that location with the URL of the support
related information. Thus, for example, if a particular piece of
information is determined 1010 to be critical to the main-
frame system, then the URL to that information will be placed
in the location that is designated for critical system-related
information, and so on. As one can see, by organizing the

20

25

30

40

45

10

information in this manner, the system programmer can eas-
ily tend to more-critical system-related issues before tending
to less-critical system-related issues.

Referring to FIG. 11, various system components are asso-
ciated with an embodiment of an Information Management
Assistant (IMA) 1110. Again, a z/OS environment with CSO
340 is used to more clearly illustrate the IMA 1110. As noted
earlier, the CSO 340 is a primary source for information and
documentation on all of the software components that reside
in the mainframe system. Thus, in the example implementa-
tion, the IMA 1110 searches the CSO 340 for all of the
information that will be used to populate the IMA 1110 user
interface, which is shown in greater detail with reference to
FIGS. 12A and 12B. The IMA 1110 organizes the informa-
tion from the CSO 340 by category and, for some embodi-
ments, also organizes the information in a manner that corre-
sponds to the display on the SMA 310 or the PMA 710. The
IMA 1110 also permits bookmarking, annotating, or saving
of information, depending on how the system programmer
wishes to organize and review the information. Since meth-
ods of annotating and bookmarking information are known,
only a truncated discussion is provided herein. All of this
information is then displayed on a GUL.

Referring to FIGS. 12A and 12B, an example dashboard
GUI is illustrated, which may be associated with the IMA
1110 of FIG. 11. Similar to the SMA GUI 400 and the PMA
GUI 800, the IMA GUI 1200 comprises an ordered listing
1210, which corresponds to its SMA and PMA counterparts.
As shown in the specific embodiment of FIGS. 12A and 12B,
all of the information in the IMA GUI 1200 are organized in
distinct categories, such as, for example, Alerts and Actions
1220, Awareness and Time Sensitive 1230, and Reference
Manuals 1240. Each of these categories, in turn, may have
their own sub-categories. For example, the Alerts and Actions
1220 corresponds to the conditions in the SMA GUI 400.
Thus, the Alerts and Actions 1220 section includes informa-
tion on HIPER, PE, PRP, PEA, LMP, Health Check, etc.
Within each category or sub-category, the IMA GUI 1200
provides hyperlinks to a relevant URL to the information.
Thus, when a system programmer selects a URL, the IMA
1110 (FIG. 11) retrieves the corresponding information for
the system programmer.

Conventionally, it is possible to overload the system pro-
grammer with information, especially since mainframe sys-
tems can experience upwards of tens of thousands of alerts
and errors in any given year. Thus, for some embodiments, the
IMA 1110 (FIG. 11) also permits a system programmer to
enter an experience level (e.g., novice, proficient, expert,
etc.). Where a feature such as an experience level selection is
provided, searches of the CSO 340 may be customized for
information that is tailored to that particular experience level.
So, for example, the IMA GUI 1200 of an expert system
programmer would probably not include a “Getting Started”
reference manual, while the IMA GUI 1200 of a novice
system programmer would include such a reference manual.

By providing a central source for viewing and retrieving
information, the IMA 1110 (FIG. 11) and its corresponding
GUI 1200 allows a system programmer to quickly review
what information is available, and retrieve information as the
system programmer desires.

Interplay Between SMA, PMA, and IMA

The SMA (FIGS. 1 through 4B), the PMA (FIGS. 5
through 8), and the IMA (FIGS. 9 through 12B) can be imple-
mented in cooperation to provide a more powerful user expe-
rience for a system programmer. For example, when the SMA
provides a software update or a HIPER PTF, corresponding
documentation on the HIPER PTF orupdate can be populated

US 9,116,597 B1

11

inthe IMA. Thus, the system programmer has both the update
and the relevant documentation relating to the update.

Also, when the PMA identifies an error for which there is
an appropriate solution, that solution can be downloaded to
the SMA for execution by the system programmer, and a
corresponding IMA entry can be generated. Thus, by coordi-
nating the entries and actions between the SMA, PMA, and
IMA, the system programmer can be provided with a stream-
lined interface in which to update and maintain the mainframe
system that is under the care of the system programmer.
Computer System Architecture

Referring to FIG. 13, a schematic of an example computer
system having computer readable program code for executing
any aspects described herein with regard to FIGS. 1 through
12B is illustrated. The computer system 1300 includes one or
more microprocessors 1302 that are connected to memory
1304 via a system bus 1306. A bridge 1308 connects the
system bus 1306 to an input/output (I1/0) Bus 1310 that links
peripheral devices to the microprocessor(s) 1302. Peripherals
may include storage 1312, such as a hard drive, removable
media storage 1314, e.g., floppy, flash, CD and/or DVD drive,
1/0 device(s) 1316 such as a keyboard, mouse, etc. and a
network adapter 1318. The memory 1304, storage 1312,
removable media insertable into the removable media storage
1314 or combinations thereof, can be used to implement the
methods, configurations, interfaces and other aspects set out
and described herein with regard to FIGS. 1 through 12B.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described herein
in any of a number of patentable classes or context including
any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement
thereof. Accordingly, aspects of the present disclosure may be
implemented entirely in hardware, entirely in software (in-
cluding firmware, resident software, micro-code, etc.) or by
combining software and hardware implementation that may
all generally be referred to herein as a “circuit,” “module,”
“component,” or “system.” Furthermore, aspects of the
present disclosure may take the form of a computer program
product embodied in one or more computer readable media
having computer readable program code embodied thereon.

Any combination of one or more computer readable media
may be utilized. The computer readable media may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a por-
table compact disc read-only memory (CORaM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-

10

15

20

25

30

35

40

45

50

55

60

65

12

puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
anobject oriented programming language such as Java, Scala,
Smalltalk, Eiffel, JADE, Emerald, C++, CII, VB.NET,
Python or the like, conventional procedural programming
languages, such as the “c” programming language, Visual
Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP,
dynamic programming languages such as Python, Ruby and
Groovy, or other programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider) or in
acloud computing environment or offered as a service such as
a Software as a Service (SaaS).

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable instruction
execution apparatus, create a mechanism for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that when executed can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions when stored in the computer readable medium
produce an article of manufacture including instructions
which when executed, cause a computer to implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable instruction
execution apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatuses or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-
ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program

US 9,116,597 B1

13

products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting of
the disclosure. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be fur-
ther understood that the terms “comprises” and/or “compris-
ing,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the claims
below are intended to include any disclosed structure, mate-
rial, or act for performing the function in combination with
other claimed elements as specifically claimed. The descrip-
tion of the present disclosure has been presented for purposes
of illustration and description, but is not intended to be
exhaustive or limited to the disclosure in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the disclosure. The aspects of the disclosure
herein were chosen and described in order to best explain the
principles of the disclosure and the practical application, and
to enable others of ordinary skill in the art to understand the
disclosure with various modifications as are suited to the
particular use contemplated. For example, while various
embodiments are disclosed within the context of a zZ/OS envi-
ronment, it should be appreciated by those having skill in the
art that the disclosed processes, systems, and user interfaces
can be modified to accommodate any other mainframe sys-
tem environment. Also, while particular embodiments are
described with reference to CA Technologies® products and
services, it should be appreciated that the disclosed embodi-
ments are not limited to CA Technologies® products and
services but, instead, can be tailored to accommodate other
products and services that are deployed in a mainframe sys-
tem environment. These, and other such changes, are
intended to be within the scope of this disclosure.

What is claimed is:
1. In a mainframe system, a machine-executable process,
comprising:

providing a user interface having a plurality of segments,
each of the plurality of segments associated with a
unique priority level of support related information;

searching a support database for support related informa-
tion;

determining whether new support related information is
found in the support database;

20

25

35

40

45

55

60

65

14

performing, when new support related information is
found:
determining a location of the new support related infor-
mation;
generating a user-selectable Universal Resource Loca-
tor (URL) of the determined location; and
inserting the generated URL into the user interface, by:
determining a priority level of the new support related
information;
determining a select one of the plurality of segments
in the user interface that corresponds to the deter-
mined priority level; and
populating the select one of the plurality of segments
with the generated URL.
2. The process of claim 1, wherein:
the plurality of segments of the user interface include at
least an alert segment, a time-sensitive segment, and a
reference segment;
further comprising at least one of:
inserting the generated URL into the alert segment on the
user interface;
inserting the generated URL into the time-sensitive infor-
mation segment on the user interface; and
inserting the generated URL into the reference segment on
the user interface.
3. The process of claim 2 further comprising:
subdividing the alert segment into a plurality of sub-seg-
ments, including at least a HIPER sub-segment, a Pro-
gram Temporary FIX sub-segment, a PTF-in-Error sub-
segment, a License Managed Program sub-segment, and
a system check sub-segment;
wherein inserting the generated URL into the alert segment
on the user interface comprises at least one of:
inserting a URL associated with information about a
High-Impact PERvasive (HIPER) condition into the
HIPER sub-segment;
inserting a URL associated with information about a
Program Temporary Fix (PTF) for installation into the
Program Temporary FIX sub-segment;
inserting a URL associated with information about a
PTF-in-Error (PE) condition into the PTF-in-Error
sub-segment;
inserting a URL associated with information about a
License Managed Program (LMP) expiration condi-
tion into the License Managed Program sub-segment;
and
inserting a URL associated with information about a
system check condition into the system check sub-
segment.
4. The process of claim 2 further comprising:
subdividing the reference segment into a plurality of sub-
segments, including at least a meeting sub-segment, an
event sub-segment, and a conference sub-segment;
wherein inserting the generated URL into a reference seg-
ment on the user interface comprises at least one of:
inserting a URL associated with information about a
meeting into the meeting sub-segment;
inserting a URL associated with information about a
social media event into the media event sub-segment;
and
inserting a URL associated with information about a
conference into the conference sub-segment.
5. The process of claim 2 further comprising:
subdividing the time-sensitive information segment into a
plurality of sub-segments, including at least a reference
document sub-segment, a news-feed sub-segment, and a
video tutorial sub-segment;

US 9,116,597 B1

15

wherein inserting the generated URL into a time-sensitive

information segment on the user interface comprises at

least one of:

inserting a URL associated with information about a
reference document into the reference document sub-
segment,

inserting a URL associated with information about a
news feed into the news-feed sub-segment; and

inserting a URL associated with information about a
video tutorial into the video tutorial sub-segment.

6. A computer-readable storage medium comprising hard-
ware with executable program code stored thereon, wherein
the program code includes instructions that when executed by
a mainframe computer system, implement:

auser interface having a plurality of segments, each of the

plurality of segments associated with a unique priority
level of support related information;

a support database; and

an information management assistant communicatively

coupled to the support database, the information man-

agement assistant operative to search the support data-

base for new support information, the information man-

agement assistant operative to further generate a URL

associated with the new support information, the infor-

mation management assistant to further provide the gen-

erated URL in the user interface so as to:

determine a priority level of the new support related
information;

determine a select one of the plurality of segments in the
user interface that corresponds to the determined pri-
ority level; and

populate the select one of the plurality of segments with
the generated URL.

7. The computer-readable storage medium of claim 6,
wherein:

the plurality of segments of the user interface include at

least an alerts and actions segment, a time-sensitive
information segment, and a reference segment; and

the location in the user interface that corresponds to the

determined priority level is at least one of:

the alerts and actions segment;

the time-sensitive information segment; and

the reference segment.

8. The computer-readable storage medium of claim 6,
wherein the generated URL is associated with least one of:

information associated with a High-Impact PERvasive

(HIPER) condition;
information associated with a Program Temporary Fix
(PTF) for installation;

information associated with a PTF-in-Error (PE) condi-

tion;

information associated with a License Managed Program

(LMP) expiration condition; and

information associated with a system check condition.

9. The computer-readable storage medium of claim 6,
wherein the generated URL is associated with least one of:

information associated with a meeting;

information associated with a social media event; and

information associated with a conference.

10. The computer-readable storage medium of claim 6,
wherein the generated URL is associated with least one of:

information associated with a reference document;

information associated with a news feed; and
information associated with a video tutorial.

11. A computer-readable storage medium comprising
hardware with executable program code stored thereon to

10

15

20

25

30

35

40

45

50

55

60

16

generate a graphical user interface, wherein the program code
includes instructions that when executed by a mainframe
computer system, implement:

a first segment comprising a first ordered listing of entries,
the first ordered listing of entries comprising a first user-
selectable entry, the first user-selectable entry compris-
ing a first hyperlink to information associated with a first
condition, the first condition having a first risk level that
is indicative of an impact of the first condition on a
mainframe system, wherein the first risk level is associ-
ated with the first segment; and

a second segment that is visually separate from the first
segment, the second segment comprising a second
ordered listing of entries, the second ordered listing of
entries comprising a second user-selectable entry, the
second user-selectable entry comprising a second hyper-
link to information associated with a second condition,
the second condition having a second risk level that is
indicative of an impact of the second condition on the
mainframe system, the second risk level being less than
the first risk level, wherein the second risk level is asso-
ciated with the second segment.

12. The computer-readable storage medium of claim 11,
further comprising a third segment that is visually separate
from the first segment, the third segment further being visu-
ally separate from the second segment, the third segment
comprising a third ordered listing of entries, the third ordered
listing of entries comprising a third user-selectable entry, the
third user-selectable entry comprising a third hyperlink to
information associated with a third condition, the third con-
dition having a third risk level that is indicative of an impact
of the third condition on a mainframe system, the third risk
level being less than the second risk level, wherein the third
risk level is associated with the third segment.

13. The computer-readable storage medium of claim 12,
wherein:

the first segment comprising hyperlinks to alerts and
actions;

the second segment comprising hyperlinks to time-sensi-
tive information; and

the third segment comprising hyperlinks to reference mate-
rials.

14. The computer-readable storage medium of claim 12,

wherein the first segment further comprises:

a first alert sub-segment comprising hyperlinks to informa-
tion about a High-Impact PERvasive (HIPER) condition
in a mainframe system;

a second alert sub-segment comprising hyperlinks to infor-
mation about a Program Temporary Fix (PTF) to be
applied in the mainframe system;

a third alert sub-segment comprising hyperlinks to infor-
mation about a PTF-in-Error (PE) condition in the main-
frame system;

a fourth alert sub-segment comprising hyperlinks to infor-
mation about a License Managed Program (LMP) expi-
ration condition in the mainframe system; and

a fifth alert sub-segment comprising hyperlinks to infor-
mation about a system check condition.

15. The computer-readable storage medium of claim 12,

wherein the second segment further comprises:

a first time-sensitive information sub-segment comprising
hyperlinks to information about meetings;

a second time-sensitive information sub-segment compris-
ing hyperlinks to information about social media; and

athird time-sensitive information sub-segment comprising
hyperlinks to information about conferences.

US 9,116,597 B1

17

16. The computer-readable storage medium of claim 12,
wherein the third segment further comprises:

afirst reference sub-segment comprising hyperlinks to ref-

erence documents;

a second reference sub-segment comprising hyperlinks to

news feeds; and

a third reference sub-segment comprising hyperlinks to

online video tutorials.

17. The machine-executable process of claim 1, wherein
providing a user interface having a plurality of segments
further includes providing a dashboard graphical user inter-
face.

18. The machine-executable process of claim 1, further
comprising:

receiving an indication of'an experience level of a user; and

customizing the user interface based on the indication of

the experience level of the user.

19. The computer-readable storage medium of claim 6,
wherein the program code to implement a user interface fur-
ther comprises program code to implement a dashboard
graphical user interface.

20. The computer-readable storage medium of claim 6,
wherein the program code further comprises program code to
implement:

receiving an indication of'an experience level of a user; and

customizing the user interface based on the indication of

the experience level of the user.

#* #* #* #* #*

20

25

18

